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We study the time-delay and unidirectionally coupled ring and linear arrays of chaotic systems, and find that
under certain conditions, the linear array can spatial periodically “copy” the chaotic dynamics of the ring with
very long anticipation times. Numerical calculations of the Lyapunov exponents show that the delay times can
result in unsynchronized chaotic waves, periodic waves, and stable states in the ring that are replicated in the
linear array, but have no effect on the absolute stability of the anticipatory synchronization. Our results show
that such configurations can both enhance the absolute stability of the synchronization manifolds and minimize
the effects of convective instabilities.
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Chaos synchronizationf1g is a universal phenomenon in
nature and science, and has been intensively studied in a
variety of coupled physical, chemical, biological, and social
systemsf2g. Many different synchronization states have been
found, such as complete synchronization, phase synchroniza-
tion, retarded synchronization, and generalized synchroniza-
tion f2g. Of special interest is the synchronization of time-
delayed chaotic systems, which is ubiquitous in nature and
technology because of finite signal transmission speeds. Re-
tardedf3g and anticipatedf4g synchronization are two phe-
nomena in time-delay systems. It has been shown that the
number of positive Lyapunov exponents, and the dimensions
of the attractor, increase linearly with the delay timef5g.
Thus the delay times have a strong effect on the dynamics of
the delay systems. This will complicate the dynamic research
on delay systems. On the other hand, delay systems are good
candidates for secure communication, since such systems are
hyperchaotic systems.

The discovery of anticipated synchronizationf4g of cha-
otic systems has attracted theoreticalf4g and experimental
f6g attention. But to our knowledge, in all the studies of
anticipated synchronization, the self-time-delay feedbacks
are used either in driving systems or driven systems, or both
systems, i.e., the time-delayed signal of one oscillator is fed
back to itself. However, it is not the case in real world, be-
cause the systems are usually driven by the time-delayed
signals of other systems. Our question is: can we find the
anticipated synchronization in such a system? Furthermore,
the maximum stably attainable anticipation time so far was
usually much shorter than the characteristic time scales of
the system’s dynamics. Although the anticipation time can be
increased up to a multiple of the coupling delay time and can
exceed the characteristic time scales of the chaotic systems
by using chains of oscillatorsf4g, the characteristic time still
has a strong effect on the anticipation time and the stability
of the anticipatory synchronization manifold. Can we find a
more stable anticipatory synchronization manifold of chaotic
systems with arbitrarily large anticipation times and mini-
mize the convective instabilitiesf7g of the system?

In this Rapid Communication, we study the anticipated
chaotic synchronization in unidirectionally coupled ring and
linear arraysf8g. The time-delayed signal of one oscillator is
used to drive the following contiguous oscillator. In our case,

the characteristic time scales of the system’s dynamics have
no effects on the anticipation time and the absolute stability
of the anticipatory synchronization manifold. As a result, we
can obtain arbitrarily long anticipation times. The scheme of
our coupling geometry is shown in Fig. 1, in which the linear
array is driven by the circular array. All oscillators, both in
the ring and in the linear array, are identical Lorenz oscilla-
tors and are connected unidirectionally with the same cou-
pling strengths. The evolution equation for the system is

ẋjstd = s„yjstd − xjstd…,

ẏjstd = Rfaxjst − Tjd + s1 − adxjstdg − yjstd − xjstdzjstd,

żjstd = xjstdyjstd − bzjstd, s1d

where the oscillators are labeled byj =18 ,28 ,… ,m8 in the
ring, andj =1,2,… ,N in the linear array. The parameterss,
R, and b are chosen in the chaotic region of the isolated
Lorenz oscillator; in our case,ss ,R,bd=s20,40,2.5d. 0,a
,1 is the coupling constant. The boundary conditions enter
throughxj, which takes the valuex18st−T18d=xm8st−T18d for
the ring, x1st−T1d=xm8st−T1d for the linear array, andxjst
−Tjd=xj−1st−Tjd for js j8dÞ1. We should note that, in our
scheme, thej th for j8thg oscillator is driven by the time-
delayed signalxj−1st−Tjd for xj8−1st−Tj8dg of the s j-1dth for

FIG. 1. Geometry of the coupled ring and linear arrays of Lo-
renz systems.
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s j8-1dthg oscillator. There are no self-delay feedbacks of in-
dividual oscillators. IfTj fTj8g=0, then anym8 neighboring
oscillators in the linear array respond to the ring and exhibit
the same dynamic behaviors as that in the ring in the long
time limit, i.e., the noncontiguous oscillatorsk8 andk+nm8
sn=0,1,2,… ;k=k8d become chaotic synchronized with the
spatial periodm8 in the linear arrayf8g. While if TjsTj8d
Þ0, thek+nm8 oscillator in the linear array will anticipate
the chaotic state of the oscillatork8 in the ring with antici-
pation time

tk = Tk8−sk+nm8d = o
i=i8=1

k=k8

sTi8 − Tid + no
i8=1

m8

Ti8 − o
i=1

nm8

Tk+i

= tk−1 + Tk8 − Tk+nm8. s2d

Equations2d can easily be obtained from the stability analy-
sis of the anticipatory synchronization manifoldsssee our
later discussiond. The values ofTi and Ti8 f0,TisTi8d,`g
have no effects on the absolute stabilities of the anticipatory
synchronization manifolds in our coupling configuration, so
we can obtain an arbitrarily large anticipation timetks0
,tk,`d by letting eitherTi8’s@Ti’s or n be largeslong
chaind. On the other hand, the lag chaotic synchronization
also exists forTi8’s,Ti’s. In fact, we can obtain an arbitrary
tks−`,tk,`d in this system. Before discussing the stabil-
ity of the anticipatory synchronization, we should note that
different Ti8 can cause different dynamic states in the ring.
As an example, takingm8=3, andT18=T28=T38=T, we nu-
merically simulate the dynamics in the ring by calculating
the largest Lyapunov exponents for differentT and a ssee
Fig. 2d. The white, gray, and black regions in Fig. 2sad cor-
respond to chaoticfsee Figs. 2sbd and 2sfdg, periodic fsee
Figs. 2sdd and 2scdg, and stablefsee Fig. 2scdg states, respec-
tively. Only chaotic states exist in the ring whenT*1.5. All
chaotic motions forT*0.03, which consist of spirals around
the zero fixed point as t→`, are unsynchronous. These
states are replicated in the linear array with anticipation time
tk if the coupling constanta is larger than the thresholdac
s<0.1 in our cased. From the above discussions we see that
the time tk=Tk8−sk+nm8d in the linear array can be positive,
zero, or negative, that is to say, the oscillatork+nm8 in the
linear array can have anticipated synchronous, complete syn-
chronous, and retarded synchronous states, compared with
the chaotic states of the oscillatork8 in the ring. Figure 3
shows the wave forms of the chaotic states of the oscillator
18 sdashed tracesd, and 1+3n sn=0,1,2d ssolid tracesd for the
following parametersm8=3, T18=5, T28=10, T38=15, T1
=T2=T3=10,T4=5, T5=T6=10,T7=5, anda=0.3. Equation
s2d gives T18−1=−5 sretarded synchronizationd, T18−4=0
scomplete synchronizationd, and T18–7=5 santicipated syn-
chronizationd, which has the same results with the numerical
simulations in Fig. 3snumerical accuracy is 10−12d.

The degree of the various synchronizations discussed
above and the time shifts can be quantified by calculating the
correlation functionf9g

S2std =
kfxk8st + td − xk+nm8stdg

2l

fkxk8
2 stdlkxk+nm8

2 stdlg1/2
. s3d

Figures 4sad–4scd show Sstd obtained from the correspond-
ing traces in Fig. 3. The minimums are shown att=−5, 0,
and 5, which indicate the retarded, complete, and anticipated
synchronization, respectively. There are also additional mini-
mums att±oi8=1

3 Ti8=t±30l sl =1,2,…d, which arise from
time correlations of the chaotic waves in the ring.

To study the absolute stability of the anticipatory synchro-
nization manifold xk8=xk+nm8,tk

=xk+nm8st−tkd with tk

=Tk8−sk+nm8d, andx j =sxj ,yj ,zjdT, we numerically calculate the

FIG. 2. sad The largest Lyapunov exponentl1 in a-T parameter
space. The white regimes denote wherel1.0, the gray regimes
denote wherel1=0, and the black regimes denote wherel1,0.
sbd–sfd The numerically simulated time seriesx18 ssolid lined, x28
sdashed lined, x38 sdotted lined for the following differentT in the
ring. We leta=0.3, T18=T28=T38=T, T=0.005 insbd, T=0.015 in
scd, T=0.02 in sdd, T=0.2 in sed, T=2 in sfd, and ss ,R,bd
=s20,40,2.5d for sad–sfd.
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maximum transversal Lyapunov exponent of the transversal
system Dstkd=xk8−xk+nm8,tk

=sDx
stkd ,Dy

stkd ,Dz
stkddT. From Eq.

s1d we have

Ḋstkd = 1 − s s 0

Rs1 − ad − zk+nm8,tk
− 1 − xk8

yk8 xk+nm8,tk
− b

2Dstkd

+ Ra11 0 0

0 0 0

0 0 0
2Dstk−1d, s4d

where Dstk−1d=xk8−1st−Tk8d−xk−1+nm8st−Tk+nm8−tkd

ªxk8−1std−xk−1+nm8st−tk−1d. It is obvious thatDstkd=0 and
Dstk−1d=0 are fixed points of this system, and therefore
xk8std=xk+nm8st−tkd, xk8−1std=xk−1+nm8st−tk−1d ,…, and
xk8−m8std=xk+sn−1dm8st−tk−m8d are anticipatory synchroniza-
tion manifolds. These manifolds can be shown to be stable
by calculating the maximum transverse Lyapunov exponent
based on Eq.s1d and Eq.s4d. The results form8=3 show that
the anticipatory manifoldx18std=x1st−t1d is stable for arbi-
trary t1 if a*ac sac<0.1 in our cased. The above discus-
sions are also true fortk,0 sretarded synchronizationd.

But the absolute stability of the anticipatory synchroniza-
tion manifolds discussed above are sensitive to the perturba-
tion or noise, and which can be demonstrated by calculating
the convective Lyapunov exponentLsvd= lim

t→`

s1/td lnfds j

=vt ,tdg / fds0,0dg f7g. Figure 5 shows the numerical results of
the convective Lyapunov exponents for both the ring-linear
array system, and, as a comparison, the chain system consid-
ered in Refs.f4,7g. In the chainf4,7g, we also choose they
coupling scheme as in Eq.s1d, but the coupling method is
similar to that in Refs.f4,7g: ẏjstd=Rxjstd−yjstd−xjstdzjstd
+aRfxj−1std−xjst−tdg. Thed-like perturbationds0,0d, which
propagates with velocityvs=j / td was added to the first Lo-
renz oscillators in both schemes. From Fig. 5 we can see that
the perturbation propagating with a velocityv in between the
two zeros ofLsvd sapproximately equal to 2 and 5 for the
ring-linear array system, and 2 and 16 for the chain systemd
are amplified fromtù0, while for Rössler systems, our nu-
merical calculation shows that the amplification takes place
at t*2 for both schemes. Figure 5 also shows that theDv fin
which Lsvd.0g of the chain system is larger than that of the
ring-linear array system, i.e., the chain system is more un-
stable than the ring-linear array system. The similar situation
occurs for Rössler systems.

FIG. 3. Numerically simulated time seriesx18 sdashed lined, and
x1,x4,x7 ssolid lined. The dotted lines indicate the value ofxist
−tkd−x18std si =1,4,7d. sad retarded synchronization,sbd complete
synchronization,scd anticipated synchronization. The parameters
arem8=3, T18=5, T28=10, T38=15, T1=T2=T3=10, T4=5, T5=T6

=10, T7=5, ss ,R,bd=s20,40,2.5d, anda=0.3.

FIG. 4. Correlation functionSstd calculated for the correspond-
ing traces in Figs. 3sad–3scd.

FIG. 5. Convective Lyapunov exponentLsvd vs propagation
velocity vs=j / td for both the ring-linear array systemssolid lined
and the chain systemsdotted lined. The d-like perturbation h
=10−10 was added to the first Lorenz oscillators of both systems.
The parametersss ,R,b;ad=s20,40,2.5;0.5d for both coupling
schemes,t=0.001,T8=0.002, andT=0.001.
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In conclusion, we have constructed a unidirectionally and
time-delay coupled ring and linear array system, which can
exhibit spatial periodicsperiod m8d anticipated, complete,
and retarded chaos synchronization with arbitrarily large an-
ticipation or retarded timetk. Numerical simulations show
that the absolute stabilities of anticipatory and retardatory
synchronization manifolds are the same as those for identical
synchronization. The spectra of the convective Lyapunov ex-
ponent shows that the ring-linear array scheme can minimize
the effects of convective instabilities compared with the

chain scheme. But the stabilities of the synchronization
manifolds are very sensitive to the noise or perturbation in
both the ring-linear array system and the chain systemf4,7g.
So the absolute stability is only a necessary condition for the
synchronization manifoldsf7g. Our system has no self-delay
feedback in individual oscillator, and could have potential
applications in secure communication and neural processes.
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University.
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