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We study the time-delay and unidirectionally coupled ring and linear arrays of chaotic systems, and find that
under certain conditions, the linear array can spatial periodically “copy” the chaotic dynamics of the ring with
very long anticipation times. Numerical calculations of the Lyapunov exponents show that the delay times can
result in unsynchronized chaotic waves, periodic waves, and stable states in the ring that are replicated in the
linear array, but have no effect on the absolute stability of the anticipatory synchronization. Our results show
that such configurations can both enhance the absolute stability of the synchronization manifolds and minimize
the effects of convective instabilities.
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Chaos synchronizatiofi] is a universal phenomenon in the characteristic time scales of the system’s dynamics have
nature and science, and has been intensively studied in @ effects on the anticipation time and the absolute stability
variety of coupled physical, chemical, biological, and socialof the anticipatory synchronization manifold. As a result, we
systemg2]. Many different synchronization states have beencan obtain arbitrarily long anticipation times. The scheme of
found, such as complete synchronization, phase synchronizgur coupling geometry is shown in Fig. 1, in which the linear
tion, retarded synchronization, and generalized synchronizagrray is driven by the circular array. All oscillators, both in
tion [2]. Of special interest is the synchronization of time- tne ring and in the linear array, are identical Lorenz oscilla-
delayed chaotic systems, which is ubiquitous in nature ang,rs and are connected unidirectionally with the same cou-

technology because of finite signal transmission speeds. Re1ing strenaths. The evolution equation for the svstem is
tarded[3] and anticipated4] synchronization are two phe- Piing gins. q y

nomena in time-delay systems. It has been shown that the

number of positive Lyapunov exponents, and the dimensions Con

of the attractor, increase linearly with the delay tiffg. X;(t) = ay;(t) (1),

Thus the delay times have a strong effect on the dynamics of

the delay systems. This will complicate the dynamic research

candidates for seeure communication, since such sysiems are 10 =R+ (1= @)% (0] =% (0 =% (070,
, ystems are

hyperchaotic systems.

The discovery of anticipated synchronizatipt] of cha-

otic systems has attracted theoretif4] and experimental z(t) =x()y;(t) - bz(t), (1)

[6] attention. But to our knowledge, in all the studies of

anticipated synchronization, the self-time-delay feedbacks

are used either in driving systems or driven systems, or botiwhere the oscillators are labeled py1’,2’,...,m" in the
systems, i.e., the time-delayed signal of one oscillator is feding, andj=1,2,...,N in the linear array. The parameters
back to itself. However, it is not the case in real world, be-R, and b are chosen in the chaotic region of the isolated
cause the systems are usually driven by the time-delayedorenz oscillator; in our caség,R,b)=(20,40,2.5. 0<«
signals of other systems. Our question is: can we find the<1 is the coupling constant. The boundary conditions enter
anticipated synchronization in such a system? Furthermorehroughx;, which takes the valug, (t—T;/) =X, (t-Ty) for

the maximum stably attainable anticipation time so far washe ring, X;(t—T;) =X,y (t—T,) for the linear array, anékj(t
usually much shorter than the characteristic time scales Of-Tj):xj_l(t—Tj) for j(j’') #1. We should note that, in our
the system’s dynamics. Although the anticipation time can b&cheme, theth [or j’th] oscillator is driven by the time-
increased up to a multiple of the coupling delay time and capje|ayed signak;_y(t—T;) [or x;/_4(t—T;,)] of the (j-1)th [or
exceed the characteristic time scales of the chaotic systems

by using chains of oscillatofg}], the characteristic time still T,

has a strong effect on the anticipation time and the stability
of the anticipatory synchronization manifold. Can we find a
more stable anticipatory synchronization manifold of chaotic
systems with arbitrarily large anticipation times and mini-
mize the convective instabilitids] of the system?

In this Rapid Communication, we study the anticipated
chaotic synchronization in unidirectionally coupled ring and
linear array48]. The time-delayed signal of one oscillatoris  FIG. 1. Geometry of the coupled ring and linear arrays of Lo-
used to drive the following contiguous oscillator. In our case renz systems.

T,
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(j’-1)th] oscillator. There are no self-delay feedbacks of in- 15F @
dividual oscillators. IfT; [T;:]=0, then anym’ neighboring
oscillators in the linear array respond to the ring and exhibit
the same dynamic behaviors as that in the ring in the long
time limit, i.e., the noncontiguous oscillatok$ and k+nm’
(n=0,1,2,..;k=k’) become chaotic synchronized with the 1f
spatial periodm’ in the linear array[8]. While if T;(T;/)

#0, thek+nnY oscillator in the linear array will anticipate _
the chaotic state of the oscillat&f in the ring with antici-

pation time
05t
k=k’ m’ nm’
k= Thr—(kenmy) = 2 (T =T+ ”E Ty - E Thai
i=i'=1 i'=1 i=1
Ok
=71+ T = Tienny - (2) 0 01 02 03 04 05 06 07 08 09 1
oL
o X[ of
Equation(2) can easily be obtained from the stability analy-< o et \ 1
sis of the anticipatory synchronization manifol¢see our ~ —20 —_—
later discussion The values ofT; and T, [0<T;(Tj/) <] 4 . . . 3

have no effects on the absolute stabilities of the anticipatorﬁj: OFN n v
synchronization manifolds in our coupling configuration, so< _zol’ "
we can obtain an arbitrarily large anticipation timg(0 .
< 7<) by letting eitherT,,’s>T;’s or n be large(long % st i
chain. On the other hand, the lag chaotic synchronizatior< :‘g’,'-._;"""
also exists foiT;,’s<T,;’s. In fact, we can obtain an arbitrary "
Ti(—0 < 7<) in this system. Before discussing the stabil- = e
ity of the anticipatory synchronization, we should note that- _m-.f . . - Vv 1
different T;; can cause different dynamic states in the ring. o 2 4 6 8 10 12 14
As an example, takingy =3, andT;, =T, =T5 =T, we nu- 3 * : oy - ALr N
merically simulate the dynamics in the ring by calculatingX [N/ AN MR E _‘ VAL
the largest Lyapunov exponents for differéhtand o (see e — - 2 )
Fig. 2). The white, gray, and black regions in Figapcor-
respond to chaoti¢see Figs. &) and 2Zf)], periodic[see
Figs. 4d) and Zc)], and stabldsee Fig. )] states, respec- FIG. 2. (a) The largest Lyapunov exponekt in o-T parameter
tively. Only chaotic states exist in the ring wh@g=1.5. All  space. The white regimes denote whare>0, the gray regimes
chaotic motions foff = 0.03, which consist of spirals around denote where\'=0, and the black regimes denote where<0.
the zero fixed point as-to, are unsynchronous. These (b)—(f) Th_e numerically s!mulated time serieg _(solld Ilm_a), Xor
states are replicated in the linear array with anticipation timedashed liné xs. (dotted ling for the following differentT in the
7 if the coupling constant is larger than the threshold, ~ 1n9- We leta=0.3, T, =To =Ty =T, T=0.005 in(b), T=0.015 in
(=0.1 in our case From the above discussions we see that(_c)’ZOTZg'gz f'n (d), szO‘Z in (), T=2 in (), and (o,R,b)
the time =Ty _4unny) in the linear array can be positive, =(20,40,2.5 for (-(0).
zero, or negative, that is to say, the oscillakernm’ in the
linear array can have anticipated synchronous, complete syn-
chronous, and retarded synchronous states, compared with
the chaotic states of the oscillatkf in the ring. Figure 3
shows the wave forms of the chaotic states of the oscillator
1’ (dashed tracesand 1+3 (n=0,1,2 (solid tracesfor the ) )
following parametersm’=3, T,;,=5, T, =10, Ty =15, T, Flgures 4a).—4(c') show S7) pptamed from the correspond-
=T,=T5=10,T,=5, Ts=T¢=10, T;=5, ande=0.3. Equation  iNg fraces in _Flg_. 3. The minimums are shownrat—S,_O_,
(2) gives Ty_,=-5 (retarded synchronization Ty_,=0 and 5, Whlch_md|cate the_ retarded, complete, ano_l _ant|C|p<'_ite_d
(complete synchronizationand T,,_,=5 (anticipated syn- synchromzaugn, respectively. There are also additional mini-
chronization, which has the same results with the numericalmums atr+Xx7_ T, =7+30 (1=1,2,...), which arise from
simulations in Fig. dnumerical accuracy is 1¢P). time correlations of the chaotic waves in the ring.

The degree of the various synchronizations discussed To study the absolute stability of the anticipatory synchro-
above and the time shifts can be quantified by calculating theization manifold X =Xywnny 7, =Xkenm (1= 7 With 7
correlation functior 9] =T —kenm) @NAX;=(X;, Y}, )T, we numerically calculate the

_ <[Xk’(t + T) - Xk+nm’(t)]2>
[OC, (0YOC ry (D]H2

A7) 3
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FIG. 3. Numerically simulated time serigg (dashed ling and
X1,X4,X7 (solid line). The dotted lines indicate the value &f(t

-7) =Xy (t) (i=1,4,7. (@) retarded synchronizatior{b) complete
synchronization,(c) anticipated synchronization. The parameters _ 4 y-10

arem’ :3, Tl’:51 T2/:10, T3r:15, Tl:T2:T3:10, T4:5, T5:T6
=10, T7=5, (¢,R,b)=(20,40,2.5, anda=0.3.

maximum transversal Lyapunov exponent of the transversal

system AW =y Xy, = (A, AT AT From  Eq.
(1) we have

- T 0
A(W) =|R(1l-a) - Zk+nm’,7-k -1 ~ X |A
Y Xrnmt,n, — Db
100
+Ral 0 0 0 |A(D, (4)
00O

A(Tk_l) :Xk’—l(t_Tk’) —Xk-1+nnv (t_Tk+nm’ - ’Tk)

2 T T T T T T T

FIG. 4. Correlation functiors(7) calculated for the correspond-

ing traces in Figs. @&—3(c).
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FIG. 5. Convective Lyapunov exponert(v) vs propagation
velocity v(=j/t) for both the ring-linear array systefsolid line)
and the chain systenfdotted ling. The &-like perturbation
was added to the first Lorenz oscillators of both systems.
The parameterdo,R,b;a)=(20,40,2.5;0.5 for both coupling
schemesy=0.001,T'=0.002, andT=0.001.

=Xpr—1(t) =X 14nmy (t— 7iep). It is obvious thatA(W=0 and
A-V=0 are fixed points of this system, and therefore
Xie () =X (=7, Xio-1() =X 14py (U= 7)., and
Xir -y (1) =Xs(n-pm (1= 7-y) @re anticipatory synchroniza-
tion manifolds. These manifolds can be shown to be stable
by calculating the maximum transverse Lyapunov exponent
based on Eq.1) and Eq.(4). The results fom’ =3 show that
the anticipatory manifold;,(t) =x;(t—7) is stable for arbi-
trary 74 if @a=a. (a,=0.1 in our casp The above discus-
sions are also true for, <0 (retarded synchronization

But the absolute stability of the anticipatory synchroniza-
tion manifolds discussed above are sensitive to the perturba-
tion or noise, and which can be demonstrated by calculating
the convective Lyapunov exponent(v)=Iim(1/t) In[&(]

t—oo
=ut,1)]/[8(0,0)] [7]. Figure 5 shows the numerical results of
the convective Lyapunov exponents for both the ring-linear
array system, and, as a comparison, the chain system consid-
ered in Refs[4,7]. In the chain[4,7], we also choose thg
coupling scheme as in Eql), but the coupling method is
similar to that in Refs[4,7]: y;(t)=Rx(t) -y;(t) = x;(t) (1)
+aR[Xj_4(t) - x;(t—7)]. The &-like perturbations(0, 0), which
propagates with velocity(=j/t) was added to the first Lo-
renz oscillators in both schemes. From Fig. 5 we can see that
the perturbation propagating with a velocityn between the

two zeros ofA(v) (approximately equal to 2 and 5 for the
ring-linear array system, and 2 and 16 for the chain system
are amplified front =0, while for Rdssler systems, our nu-
merical calculation shows that the amplification takes place
att= 2 for both schemes. Figure 5 also shows thatAhein
which A(v) > 0] of the chain system is larger than that of the
ring-linear array system, i.e., the chain system is more un-
stable than the ring-linear array system. The similar situation
occurs for Rossler systems.
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In conclusion, we have constructed a unidirectionally andchain scheme. But the stabilities of the synchronization
time-delay coupled ring and linear array system, which camanifolds are very sensitive to the noise or perturbation in
exhibit spatial periodic(period m’) anticipated, complete, both the ring-linear array system and the chain syqu.
and retarded chaos synchronization with arbitrarily large anSo the absolute stability is only a necessary condition for the
ticipation or retarded timer,. Numerical simulations show synchronization manifoldg7]. Our system has no self-delay
that the absolute stabilities of anticipatory and retardatoryfeedback in individual oscillator, and could have potential

synchronization manifolds are the same as those for identicglppiications in secure communication and neural processes.
synchronization. The spectra of the convective Lyapunov ex-

ponent shows that the ring-linear array scheme can minimize We acknowledge the financial support from the Southeast
the effects of convective instabilities compared with theUniversity.
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